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A Computational Study of Finite Element 
Methods for Second Order Linear Two-Point 

Boundary Value Problems 

By P. Keast, G. Fairweather and J. C. Diaz* 

Abstract. A computational study of five finite element methods for the solution of a single 
second order linear ordinary differential equation subject to general linear, separated boundary 
conditions is described. In each method, the approximate solution is a piecewise polynomial 
expressed in terms of a B-spline basis, and is determined by solving a system of linear 
algebraic equations with an almost block diagonal structure. The aim of the investigation is 
twofold: to determine if the theoretical orders of convergence of the methods are realized in 
practice, and to compare the methods on the basis of cost for a given accuracy. In this study 
three parametrized families of test problems, containing problems of varying degrees of 
difficulty, are used. The conclusions drawn are rather straightforward. Collocation is the 
cheapest method for a given accuracy, and the easiest to implement. Also, for solving the 
linear algebraic equations, the use of a special purpose solver which takes advantage of the 
structure of the equations is advisable. 

1. Introduction. Finite element methods for two-point boundary value problems 
for a single ordinary differential equation may take many forms. The simplest type 
of method is probably collocation [3] where an approximate solution is sought in 
some finite space subject to the constraint that it satisfy the differential equation at 
certain specified points. This type of method has been applied very successfully in 
the case of mixed order systems of boundary value problems; see, for example, [1]. 
Other methods can be described based on the standard L2-Galerkin approximation 
[9], or on a combination of this and the collocation approach [7], [13], [25]. In 
addition, different weak formulations of the boundary value problem lead to two 
other techniques, the Hl- and H-1-Galerkin methods [12], [14], [15], [17]. How one 
would apply these methods to a system of differential equations, with the exception 
of the collocation case, is not immediately clear. In addition, it is not apparent what 
the relative advantages are of these various methods, even when applied to a single 
equation. In this paper we restrict our attention to the case of a single linear 
differential equation. Our aim is to investigate numerically five finite element 
techniques for a second order linear two-point boundary value problem, with 
separated boundary conditions of a general nature. In particular, we consider 

(i) the organization of the methods; 
(ii) the treatment of the boundary conditions; 
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(iii) the relative merits of the methods on problems of varying difficulty; 
(iv) the efficient solution of the linear algebraic equations which arise in each 

method. 
Some comparisons of finite element methods for the solution of two-point 

boundary value problems have already appeared in the literature. These comparisons 
have been based mainly on theoretical considerations, such as analytical error 
bounds, and operation counts; see, for example, [19], [20], [22] and [28]. In addition, 
none of the comparisons known to the authors involve the collocation-L2-Galerkin 
method, the H'-Galerkin method or the H'1-Galerkin method. These methods all 
have attractive features, but, as is stated in Section 5 of [18], until now there have not 
been sufficient computations done to make a clear judgement as to which method is 
the best. The main purpose of this work is to attempt to rectify this situation by 
performing a systematic computational study of the methods in order to reach some 
conclusions concerning their relative merits. 

In a recent paper [4], Pereyra and Russell discuss the difficulties involved in the 
comparison of codes for boundary value problems for ordinary differential equa- 
tions. It is, in fact, very difficult to find bases for comparison of sophisticated 
software for such problems, and many potential hazards are discussed in their paper. 
Our intention is not, however, to discuss the relative merits of existing quality 
software, but to try to isolate, from any particular implementation, features of 
certain methods, and to compare the methods on the basis of these features. 

A brief outline of this paper is as follows. In Section 2 we introduce some 
notation, and summarize properties of B-splines relevant to this discussion. In 
Section 3, we describe the methods examined in this study and the structure of the 
linear systems generated by each when B-spline bases are employed, and summarize 
the convergence properties of the methods. The linear equation solvers used in this 
study are introduced in Section 4, and the results of extensive numerical experiments 
are presented in Section 5. The conclusions drawn from these are rather straightfor- 
ward and are given in Section 6. It will be demonstrated that collocation is the 
fastest method for a given accuracy and the easiest to implement. It will also be 
shown that, for solving the linear equations which arise, the use of a special purpose 
solver to take advantage of the specific structure of the equations is advisable. 

All computations were performed in double precision on an IBM 3033/N8A 
computer at the University of Toronto. 

2. Preliminaries. The boundary value problem we consider consists of the differen- 
tial equation 

(2. 1a) Lu(x) _ -a(x)u"(x) + b(x)u'(x) + c(x)u(x) =f(x), x E [x0, xl], 

subject to the boundary conditions 

XOu'(x0) + Mou(xo) = Po' 

(2.1 b) XU'(x1) + M1U(X1) = P, 

where 
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We shall assume that there exists a positive constant ao such that 

O < aO < a(x), x E [xo, X1], 

and that the functions a, b, c and f are smooth enough to ensure the validity of the 
orders of convergence stated in this section. 

The five methods examined are 
(A) collocation [3]; 
(B) L2-Galerkin [9]; 
(C) collocation-L2-Galerkin [7], [13], [25]; 
(D) H1-Galerkin [12], [14]; 
(E) H-'-Galerkin [15], [17]. 

In addition we consider a variant of (B) for selfadjoint equations. 
Before describing these methods, we introduce some notation which is used 

throughout this paper, and in the program listings, which are given in [27]. First let 
A = {Z,}NINT NINT > 1, with 

Xo = Zo < Z1 < ... < ZNINT -Xl, 

denote a partition of the interval [x0, xl], and set Ii [Zi-1, Z], and hi = Zi-Zi-1, 
i= 1,...,NINT. In all five methods, the approximate solutions are piecewise 
polynomials expressed in terms of a B-spline basis [2] defined on A. Following [2], 
we use 

K- the order of the test space 
(the degree of the piecewise polynomial + 1); 

NCOND-the number of continuity conditions imposed on the 
test space; thus if U is an element of this space 

then U E CNCOND ; 
h-the mesh size; h = max h. 

To use the B-spline package [2], one must specify, in addition to K and NCOND, 
a set of knots {T1}. These are determined by NINT, the number of subintervals 
(elements) in the partition A\ of [xo, xl], and by K and NCOND, and have the 
following form, where KCOND - K-NCOND: 

(2.2) 

Tl- T2 - _ TK 

TK+ = TK+2 ... = TK+KCOND 

TK+ KCOND+ TK+KCOND+2 TK+2KCOND 

S TK+(NINT-2)KCOND+ I 
= 

TK+(NINT-2)KCOND+2 TK+ (NINT-I)KCOND 

TK+(NINT-)KCOND+ I= TK+(NINT-I)KCOND+2 TK+(NINT-1)KCOND+K- 

The (NINT + 1) distinct knots are {Zi}NINT. The space of B-splines of order K with 
(NCOND - 1) continuous derivatives and knots {Ti} is then denoted by SNCOND(T). 
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When no risk of confusion exists we write SNCOND. The dimension of this space is 
denoted by VNCOND where 

PNCN 
K (K- NCOND)*NINT + NCOND. 

The subspace of SKCOND satisfying homogeneous Dirichlet boundary conditions is 
denoted by SKNCO and has dimension VNCOND VNCOND -2. 

Both in the application of the boundary conditions (2. ib) and in the way the 
continuity constraints are reflected in the matrix structures we implicitly use certain 
properties of the B-splines as they are constructed in de Boor's package [2]. These 
properties are summarized in the following lemmas (cf. [2]): 

LEMMA 1. Let FJ(x), j = 1,... , K, denote the basis functions spanning the B-splines 
of order K on the subinterval Ik, 1 k ? NINT. Then, for k = 1, 2,. . ., NINT, 

') I ( ) _ z-u,y, i, j = O, 1, .. ., K- 1, 

where 

II =O if i <j, 

uJ =O if K-i >j + 1. 

LEMMA 2. Let NA(x), i = 1,2,..., VCOND, denote the B-spline basis functions 
spanning SNCOND(T). Then the support of N,(x) is (T, Ti+K). 

The effect of Lemma 2 is that the basis functions ,- ... 'OK on any given 
subinterval of [xo, xl] defined by A may "spill over" on to one or both of the 
adjacent subintervals. In our experiments, NCOND is constant on the interval 
[x0, xI], and in addition 2NCOND - K. Thus, from (2.2), it follows that no basis 
function has support consisting of more than two adjacent subintervals. Conse- 
quently no three blocks of the matrices can have a column in common. One further 
piece of notation is required. We represent by 11 11 Hk the norm defined by 

H jfx[ rg[x)j( ) 

Usually 11 * 11 H? iS written as 11 * 11 L2. 

3. Description of the Methods. We now give a brief description of each of the 
methods examined in this study, followed by a summary of their convergence 
properties. 

(A) Collocation. A function U E S2 is sought satisfying 

(3 .1) LU(tlIj) 
= 

f(t,Jy), i = 1 ,2, ... ., NINT; j = 1, 2 . .., K- 2, 

and the boundary conditions (2. lb). In (3.1) the collocation points ti, are defined by 

(3.2) 1i P ) Z+?( 1 P) 

i = 1 ,2, . .. I NINT; j = 1 , 2, . .. 'K K-2, 

where the points pj are the zeros of the Legendre polynomial of degree K - 2. 
Equations (3.1) together with the boundary conditions yield a system of v2K 

( (K - 2)*NINT + 2) equations for 2K unknowns, whose coefficient matrix is 
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almost block diagonal [5] with NINT blocks. Each block is (K - 2) by K, except for 
the first and last, which are 1 by 2. The blocks overlap in 2 columns., The structure of 
this matrix for the case K = 4, NINT = 4 is shown in Figure 1, where in this and 
subsequent figures X denotes a generally nonzero entry. 

IXIIxl EFII x. x x 41: 

i x X X X 
Ix X Y Xi 

X X< XX 

- X X_X 

FIGURE 1 
The structure of the collocation matrix, for K = 4, NINT = 4. 

(B) L2-Galerkin. In the case in which I XI + I I #0, we seek U E SNCOND such 
that 

(3.3) f&(U, v) + Alla(x,)U(x,)v(x,)- a(x )U(x0)v(x-) 

v(f v) + A a(x,)v(x,) - A a(x0)v(x V E SKcOND 
0 

where 

P,(U, v) =xf'{U'(x)[a(x)v(x)]' + b(x)U'(x)v(x) + c(x)U(x)v(x)} dx, 
xo 

and 

(f, v) = f(x)v(x) dx. 
xo 

Equations (3.3) give a system Of VNCOND equations in VKCOND unknowns, the 
coefficient matrix of which is again almost block diagonal and consists of NINT 
blocks. Each block is of order K by K and overlaps the previous one in NCOND 
rows and columns. The structure of this matrix for each case K = 4, NCOND = 2, 
NINT = 5 is shown in Figure 2. 

x x x x 

x xx *x 

x x x xxx x Xixx Yx x x xr 

x X 

x x 

FIGURE 2 

The structure of the L2-Galerkin matrix, for K - 4, 

NCOND = 2, NINT = 5. 
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In the case of homogeneous Dirichlet boundary conditions, we seek U E SCOND 
such that 

(3.4) fO(U, v v) v v NCSNOND 

When A0 = A1 = 0 and I vo + I v 0 in (2.lb), that is, in the case of inhomoge- 
neous Dirichlet boundary conditions, the approximate solution U E SNCOND satis- 
fies these, and the test space in (3.4) is SKOND, as in the case of homogeneous 
Dirichlet conditions. 

For the special case of a selfadjoint equation of the form 

(3.5) - (a(x)u')' + c(x)u =f(x), 

where 

0 < aO < a(x) ? al, 0 ? c(x) ? cl, x E [xo, xl, 

for constants ao, a, cl, the resulting matrix is symmetric and positive definite. 
(C) Collocation-L2-Galerkin. Here we seek U 8 SjK such that 

(3.6) LU(tij) = f(tij) , i = 1929 . .. , NINT; j = 1, 2,9..., K- 2; 

for ijj given by (3.2), and 

(3.7) C(U, v) + !i a(x, )U(x, )v(x,) -- A a(xo)U(xo)v(xo) XI ~~~~0 

- (f, v) + v' a(x,)v(x,) - va(xo)v(xo), v E S2. 
1l 0 

Since U E S[, there are vK = (K - 1)*NINT + 1 unknowns. Equations (3.6) im- 

pose NINT*(K - 2) conditions, while Eqs. (3.7) give v2 = NINT + 1 conditions. 
Special mention must be made of the ordering of the equations. Corresponding to 

each subinterval there are K - 2 collocation equations (those arising from (3.6)) and 
two Galerkin equations (arising from (3.7)). For each subinterval the equations are 
ordered so that the Galerkin equations are placed first and last. The coefficient 
matrix then has the structure shown in Figure 3 for the case K = 4, NINT = 4. Each 

block indicated in Figure 3 is of order K by K. 

~~~ x x x x 

x~ ~~x ' x x x 
;X X- X x x x 

~~~xx x x 
~~~x x x x 

FIGUR 3Xx 
Structure of ~ ~ th colcto-xGli marx,frK=4NIT=. 
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When Dirichlet boundary conditions are prescribed, the changes required in (3.7) 
are similar to those made in (3.3). 

(D) H'-Galerkin. In this approach we seek U E SICOND satisfying 

(3.8) (LU, v) =(f,v), V E SCNDK 2 

and the boundary conditions (2.1b). This results in vK-2ND_ + 2 equations in 
VKCOND unknowns. (Note that vKNCOND = V COD2 + 2.) For the case K - 6, 
NCOND = 3, NINT = 4, the structure of this matrix is shown in Figure 4. Here 
each block is (K - 2) by K, except for the first and last, which are 1 by 2. The 
overlap is in NCOND columns and NCOND-2 rows. 

=7 x X" X X 
~~~x x x x x x 

~~~~~x x x x x XI 

~~~x x x x x x 

x x x x x 'Al~~r::- 

FIGUR 4 X I K 

The strucure of th H'Glri marx, fo K ,NOD=3 IT=4 

(E) H -Galerkin. When I X0 /+ I XA I > 0, one seeks U E So' satisfying 

(3.9) (U, L*v) (f,v) + l (av)(x) - v(av)(xO), E 2+ 

where 

K+2= {V E S2K+2 | Bov(xo) = Blv(xl) }01 

and 

B v(xi) = Aa(xj)v(x1) + (a(x)v(x))' |x=x, + b(xj)v(xj), i = 0,1. 

The boundary conditions satisfied by the elements of S2K+2 are called adjoint 
boundary conditions; cf. [6]. 

When I X0I + I Al I = 0, the case of Dirichlet conditions, U E SOK satisfies 

(3.10) (U, L*v) (f, v) + vo-(av)'(xo) - Il (av)'(xl), v E S2 
1t o -L I 

see [15]. Since U E S0J, we have voj unknowns, and (3.9) (or, in the case of Dirichlet 
conditions (3.10)) provides v2K+2-2 = vo equations. With an appropriate choice of 
B-spline basis for S2K+2 (respectively, S2K'+2) see [27], the coefficient matrix has a 
simple structure exemplified in Figure 5 for the case K = 2, NINT -4. The matrix 
is almost block diagonal with NINT blocks, overlapping in two rows only. The 
internal blocks are of order (K + 2) by K and the first and last ones (K + 1) by K. 
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x x x x 
x x x x 
x x x x 
x x x x x x x x 

xx x x 
x x xx 

Z x x x x x x x A X X X X X X X xxx _xxx xx 
xx xx 
x x x x 
xxx xxxxx 
.xxx xxx x 

xx x x 
xx x x 

Xx X- XxX 

FIGURE 5 

The structure of the H-Galerkin matrix, for K = 4, NINT = 4. 

In Table 1 we have indicated the orders of convergence in various norms, whicl 
have been derived for the methods. Under certain conditions, specified in the table 
L2-Galerkin, collocation-L2-Galerkin, and H'-Galerkin should exhibit superconver 
gence at the nodes. Collocation should always exhibit nodal superconvergence, while 
superconvergence at the Gauss points is predicted for H-'-Galerkin. In the method 
requiring quadratures, we remove any effect of quadrature error from the experi 
ments by using as many Gaussian quadrature points as required to give the integral 
exactly in the case of constant coefficients. In each program, the number o 
quadrature points used was K + 1. This will affect the efficiency of the method 
only in the setting-up stage. 

TABLE 1 

Orders of convergence for the methods. 

* NCOND = 1[9]; 
** when the collocation points are the Jacobi points of order K - 2 [7]; 

NCOND = 2, 3 [12,14]. 

L2- Collocation- 
Collocation Galerkin L2-Galerkin H'-Galerkin H-1-Galerkin 

L2-error K K K K K 
H'-error K-I K-I K-I K-I 
H2-error K -2 K- 2 
LO-error K K K K K 
Nodal 2K-4 2K-2* 2K-2** 2K-4*** 
error 
Error at K+ 1 
Gauss points 

4. Linear Equation Solvers. As noted earlier, each of the methods described in 
;ection 3 gives rise to a system of equations whose coefficient matrix is almost block 
liagonal. One package of FORTRAN routines commonly used for solving such 
ystems is SOLVEBLOK [5], which implements Gaussian elimination with scaled row 
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pivoting, taking advantage of the special structure of the coefficient matrix. In our 
experiments this package is used to solve the systems arising in the L2-Galerkin 
method, (3.3), the collocation-L2-Galerkin method, (3.6)-(3.7), and the H1-Galerkin 
method, (3.8) for the case NCOND > 2. The positive definite systems arising in the 
L2-Galerkin method for the selfadjoint problem (3.5) are solved using a routine 
implementing a sparse Choleski factorization, which preserves the block structure of 
the coefficient matrix and does not introduce fill-in. In Section 5 this method is 
referred to as SOLVER. 

The SOLVEBLOK package can also be used to solve the systems arising in 
collocation, Hl-Galerkin (NCOND = 2), and H-1-Galerkin. However, these systems 
can be solved more efficiently using packages developed by the authors [8], [29]. The 
packages COLROW and ROWCOL, described in [8] and [29], respectively, use a 
variant of the procedure of alternate row and column elimination described by 
Varah [23], in which row elimination with row pivoting (the usual method) is 
alternated with column elimination with column pivoting, switching from one to the 
other when fill-in would occur otherwise. This procedure is stable and, in contrast to 
the procedure implemented in SOLVEBLOK, generates no fill-in. Detailed descrip- 
tions of our implementations of alternate row and column elimination are given in 
[8] and [29] along with listings of the FORTRAN routines. 

5. Numerical Experiments. The experiments performed were designed to examine 
several points, namely: 

(i) to determine if the theoretical orders of convergence given in Section 3 were 
realized in practice; 

(ii) to compare the methods on the basis of cost for a given accuracy, the cost 
being estimated by timing the setting-up phase and the solution phase separately. 
(This is a much more reasonable basis for comparison than comparing the accuracy 
of the methods using the same order of approximant and the same NINT and 
NCOND); 

(iii) to examine the effect of varying NCOND on the accuracy of the Galerkin and 
H'-Galerkin methods. (In the other methods NCOND is fixed.) 

Three test problems, chosen from the literature, were used in the experiments, one 
with two parameters and two with a single parameter. These are: 

I. [17] -(au')' = 2[l + (x - x-)(arctan a(x - x-) + arctan ax-)], x E (0, 1), u(0) = 

u(l) = 0, where 

a(x) = a-'a(x -X 

and a, x- are parameters, a > 0, 0 < x < 1. The solution is 

u(x) = (1 - x)[arctana(x - x-) + arctanax-]. 

For large values of a, the solution has a sharp knee close to x-. In [17], the values 
a = 5, x = 0.2 and a = 100, x = 0.36388 were chosen. 

II. -u" + a2u = -a2cos2 'TX - 2T2cos27x, x E (0, 1), u(0) = u(l) = 0, where a 
is a parameter. The solution is 

u(x) = [ea(l x) + eax]/ (1 + ea) - cos2 TX. 

This problem with a = 20 was introduced by Stoer and Bulirsch; see, for example, 
[21]. The solution has boundary layers of width 1/a near the two endpoints. 
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III. [16] -eu" - xu' = E'r2cosrx + rXsin7Tx, x E (-1,1), u(-1) = -2, u(l) 0, 
where e is a parameter. The solution is 

u(x) = cos s7x + erf(x/ 2e)/erf( 1/ 2), 

which has a spike at x = 0; see [1]. 
The values of the parameters used in this study are given in Table 2, and we will 

refer to the corresponding problems as, for example, 1-3, meaning problem I with 
parameter choice 3, a = 100, x = 0.36388. These parameter choices produce both 
easy problems (problems with smooth solutions, choice 1), and "rough" problems 
(problems whose solutions are rapidly varying over a small subinterval, choice 3). In 
each case, choice 2 yields a problem of moderate difficulty. 

TABLE 2 

The choices of parameters used. 

I II III 

a x a e 
1 1. 0.5 1. 1. 
2 20. 0.5 20. .001 
3 100. 0.36388 30. .0001 

Each method was run on the set of problems, with a sequence of values of NINT, 
K, and NCOND. The error statistics which were gathered depended on the method, 
and were those for which estimates are given in Table 1. For ease of reference, the 
various programs are named as follows: 

COLLOC: Collocation, 
GALERK: L2-Galerkin, 
SAGLRK: L2-Galerkin for selfadjoint problems, 
COLGAL: Collocation-L2-Galerkin, collocating at Gauss points, 
JACGAL: Collocation-L2-Galerkin, collocating at Jacobi points, 
HIGAL : H'-Galerkin, 
HM1GAL: H-1-Galerkin. 

The LI error was approximated by finding the maximum error at 4 points in each 
subinterval, and, except in the case of HM1GAL, at the nodes Zi. For HM1GAL 
using approximants of order K, the maximum error at the Gauss points, K in each 
subinterval, is found. 

5.1. Orders of Convergence. The first concern was to see whether the predicted 
orders of convergence were realized. To this end, a sequence of calculations with 
increasing NINT was performed, and approximations to the orders were computed 
in the following way: let E(NI) and E(N2) denote the errors corresponding to two 
consecutive values of NINT, N1 and N2 (N2 > N1). Then the approximate order of 
convergence is given by 

log I E(N1)/E(N2) I/log(N2/NI). 
We now summarize briefly the results obtained for each method. 
(A) Collocation. The orders expected were clearly observed in the easy problems 

(problems I-1, 11-1, 111-1). In some of the harder ones, particularly 111-3, the order of 
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convergence was very poor, but this is clearly caused by the problem and not the 
method. Typical sets of output from the order calculation program are shown in 
Table 3, for problem 11-1, and in Table 4 for problem 11-3. The orders were 
calculated for the two values NJ, N2 of NINT given. The superconvergence of 
O( h2K-4) at the nodes is clearly demonstrated. 

TABLE 3 
The orders of convergence for collocation on problem 11-1 (NCOND = 2). 

K N, N L H H2 L Nodal-LX 

6,7 4.1 3.0 2.0 3.9 4.4 
4 7,8 4.1 3.0 2.0 3.9 3.7 

8,9 4.0 3.0 2.0 3.9 4.3 
9,10 4.1 3.0 2.0 4.0 3.7 

6,7 5.0 4.0 3.0 5.1 6.4 
5 7,8 5.0 4.0 3.0 5.3 5.6 

8,9 5.0 4.0 3.0 4.8 6.3 
9,10 5.0 4.0 3.0 4.8 5.8 

6,7 6.0 5.0 4.0 5.2 8.4 

6 7,8 6.0 5.0 4.0 6.5 7.7 
8,9 6.0 5.0 4.0 5.4 8.3 
9,10 6.0 5.0 4.0 6.4 7.8 

TABLE 4 
The orders of convergence for collocation on problem 11-3 (NCOND = 2). 

t indicates that the errors are at the round-off error noise level. 

K N,N2 L2 HI H2 LX Nodal-LX 

20,22 4.7 3.7 2.8 4.4 5.8 
5 22,24 4.8 3.8 2.8 4.4 5.9 

24,26 4.8 3.8 2.8 4.5 6.0 

20,22 6.7 5.7 4.7 6.4 9.7 
7 22,24 6.8 5.7 4.8 6.4 9.8 

24,26 6.8 5.8 4.8 6.5 9.8 

20,22 8.8 7.9 6.9 8.5 t 
9 22,24 8.9 7.8 6.8 8.6 t 

24,26 8.8 7.9 6.9 8.6 t 

(B) L2-Galerkin. In this case the L2 and LX norms of the error are again O(h K), 

and the H1 norm O( hK-l) [9], [11], [24]. Superconvergence at the nodes of order 
h2K-2 is predicted in the case NCOND = 1. Table 5 gives these orders for problem 
I-1, and Table 6 for problem 11-3. The orders expected do show up, including the 
superconvergence when NCOND = 1. There is obviously no superconvergence when 
NCOND = 2. (See also the remarks later concerning the behavior of the magnitude 
of the errors for increasing NCOND.) 
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TABLE 5 

The orders of convergence for L2-Galerkin on problem I- 1. 

K NCOND N ,N2 L2 H' LX Noda1-L' 

6,7 3.0 2.0 3.0 3.9 

3 1 7,8 3.0 2.0 3.0 4.2 
8,9 3.0 2.0 3.0 3.8 

9,10 3.0 2.0 3.0 4.2 

6,7 4.0 3.0 4.3 6.0 

1 7,8 4.0 3.0 3.7 6.2 
8,9 4.0 3.0 4.1 5.8 

4 9,10 4.0 3.0 4.0 6.3 

6,7 3.9 2.9 3.4 3.4 

2 7,8 3.8 2.9 4.0 4.0 
8,9 3.9 2.9 3.8 3.8 

9,10 3.9 3.0 3.9 3.9 

6,7 5.0 4.0 5.2 7.6 

1 7,8 5.0 4.0 4.6 8.9 
8,9 5.0 4.0 5.0 7.5 

5 9,10 5.0 4.0 5.2 9.7 
6,7 5.1 4.1 5.4 5.6 

2 7,8 5.0 4.1 4.9 6.6 
8,9 5.1 4.1 5.0 5.5 

9,10 5.0 4.0 5.2 6.3 

TABLE 6 

The orders of convergence for L2-Galerkin on problem II-3. 

K NCOND N,,N2 L2 H' L?? Noda1-L? 

20,22 2.7 1.8 2.4 3.7 
3 1 22,24 2.8 1.8 2.4 3.9 

24,26 2.8 1.8 2.5 3.9 

20,22 4.8 3.8 4.3 7.7 
1 22,24 4.7 3.8 4.4 7.8 

24,26 4.8 3.8 4.4 7.9 
5 20,22 4.8 3.8 4.3 4.8 

2 22,24 4.9 3.9 4.4 4.9 
24,26 4.9 3.9 4.4 5.0 

20,22 6.7 5.7 6.3 11.6 
1 22,24 6.8 5.8 6.4 11.7 

7 ____ ____ 24,26 6.8 5.8 6.4 11.8 

7 20,22 6.8 5.8 6.4 6.8 
2 2,224 6.8 5.8 6.4 6.9 

24,26 6.8 5.8 6.4 7.0 

(C) Collocation-L2-Galerkin. Two versions of this code were run, COLGAL in 
which the collocation points used were a subset of the Gauss points used in the 
Galerkin qUadratUreS, and JACGAL in WhiCh the COllOCatiOn POintS Were the JaCObi 
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points of order K - 2. Both methods exhibited the predicted orders of convergence 
of the L2, L? and H' errors, but as expected, [7], only JACGAL showed evidence of 
superconvergence (of order h2K-2) at the nodes, see Tables 7 and 8. 

TABLE 7 
The orders of convergence for COLGAL on problem 11-2 (NCOND = 1). 

K NI,,N L2 H' L?? Nodal-L? 

6,7 3.1 2.0 3.0 4.2 
3 7,8 3.1 2.0 2.9 3.8 

8,9 3.0 2.0 2.9 3.6 
9,10 3.1 2.0 3.1 3.8 

6,7 3.9 2.9 3.8 3.8 
4 7,8 3.9 3.0 3.8 3.9 

8,9 4.0 3.0 3.9 3.9 
9,10 4.0 3.0 3.9 3.9 

6,7 5.0 4.0 5.3 7.0 
5 7,8 5.0 4.0 4.9 5.9 

8,9 5.0 4.0 4.7 6.2 
9,10 5.0 4.0 5.0 6.3 

6,7 6.0 5.0 5.8 5.8 

6 7,8 6.0 5.0 5.9 5.9 
8,9 6.0 5.0 5.9 5.9 
9,10 6.0 5.0 6.0 6.0 

TABLE 8 
The orders of convergence for JACGAL on problem 111- 1 (NCOND = 1). 

K N,,N2 L2 H' L?? Nodal-L? 

6,7 3.1 2.0 3.0 4.2 
3 7,8 3.1 2.0 2.9 3.8 

8,9 3.0 2.0 2.9 3.6 
9,10 3.1 2.0 3.1 3.8 

6,7 4.0 3.0 3.4 6.4 
4 7,8 4.0 3.0 4.2 5.7 

8,9 4.0 3.0 3.8 6.3 
9,10 4.0 3.0 4.1 5.8 

6,7 5.0 4.0 5.2 7.8 
5 7,8 5.0 4.0 5.2 8.0 

8,9 5.0 4.0 4.6 7.9 
9,10 5.0 4.0 5.0 7.9 

6,7 6.0 5.0 5.3 10.2 

6 7,8 6.0 5.0 6.3 9.8 
8,9 6.0 5.0 5.6 10.2 
9,10 6.0 5.0 6.2 9.9 

(D) H'-Galerkin. Table 9 shows a typical set of results, for problem I-1. The 
orders of convergence are as expected. In particular, the superconvergence at the 
nodes of order h2K-4 is clearly evident. Table 10 shows the results for problem 11-3. 
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TABLE 9 

The orders of convergence for H' -Galerkin on problem I- 1. 

K NCOND N,, N L2 H' H2 LX Nodal-L' 2 

6,7 4.0 3.0 2.0 4.2 3.8 

2 7,8 4.0 3.0 2.0 3.8 4.4 
8,9 4.0 3.0 2.0 4.1 3.7 
9,10 4.0 3.0 2.0 4.0 4.3 

6,7 4.2 3.2 2.1 4.4 3.5 
3 7,8 4.2 3.2 2.1 3.9 4.2 

8,9 4.1 3.1 2.1 4.2 3.4 
9,10 4.1 3.1 2.0 4.1 4.2 

6,7 5.0 4.0 3.0 5.3 5.9 
2 7,8 5.0 4.0 3.0 4.5 6.3 

8,9 5.0 4.0 3.0 5.0 5.7 
9,10 5.0 4.0 3.0 5.2 6.4 

J 6,7 4.6 3.6 2.8 4.9 5.4 
3 7,8 4.7 3.7 2.8 4.6 5.9 

8,9 4.8 3.8 2.8 4.6 5.4 
9,10 4.8 3.8 2.9 5.0 6.1 
6,7 6.0 5.0 4.0 6.3 7.0 

2 7,8 6.0 5.0 4.0 5.6 7.9 
8,9 6.0 5.0 4.0 6.4 8.3 

69,10 6.0 5.0 4.0 5.5 8.1 

6,7 6.3 5.2 4.1 6.4 7.8 

3 7,8 6.2 5.2 4.1 6.0 8.3 
8,9 6.2 5.1 4.1 6.4 8.6 
9,10 6.1 5.1 4.0 5.9 8.0 

TABLE 10 

The orders of convergence for H-Galerkin on problem 11-3. 

K NCOND NI,N2 L2 H' H2 L?? Nodal-L? 

20,22 3.6 2.6 1.8 3.1 3.7 
4 2 22,24 3.6 2.7 1.8 3.2 3.9 

24,26 3.7 2.7 1.8 3.3 3.9 

20,22 5.8 4.7 3.8 5.3 7.7 
2 22,24 5.7 4.8 3.8 5.4 7.8 

24,26 5.8 4.8 3.8 5.4 7.9 

20,22 5.8 4.8 3.8 5.3 7.6 
3 22,24 5.9 4.9 3.8 5.4 7.8 

24,26 5.8 4.9 3.9 5.4 7.9 

20,22 7.7 6.7 5.7 7.4 11.6 
2 22,24 7.7 6.8 5.8 7.4 11.8 

24,26 7.8 6.8 5.8 7.4 11.9 
2 
20,22 7.8 6.8 5.8 7.4 11.6 

3 22,24 7.8 6.8 5.8 7.4 11.8 
24,26 7.9 6.9 5.9 7.5 11.9 
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(E) H-'-Galerkin. The orders of the L2 and L? errors are predicted to be hK, and 
superconvergence of order hK?l is expected at the Gauss points. These orders are 
clearly demonstrated on the easy problems; see, for example, Table 11. On the 
harder problems, the orders of convergence, calculated with moderate values of 
NINT, were lower than expected, but had the correct trend (see Table 12, for 
example). 

TABLE 1 1 

The orders of convergence for H -Galerkin on problem I-1. 

K N,, N2 L 2 L?? pOaiusts 2 Points 

6,7 2.0 2.0 3.0 

2 7,8 2.0 2.0 3.0 
8,9 2.0 2.0 3.0 
9,10 2.0 2.0 3.0 

6,7 3.0 2.9 4.0 

3 7,8 3.0 3.0 4.0 
8,9 3.0 3.0 4.0 
9,10 3.0 3.0 4.0 

6,7 4.0 4.2 5.0 

4 7,8 4.0 3.8 5.0 
8,9 4.0 4.0 5.0 
9,10 4.0 4.1 5.0 

6,7 5.0 5.2 6.0 

5 7,8 5.0 4.6 6.0 
8,9 5.0 5.0 5.9 
9,10 5.0 5.2 6.1 

TABLE 12 

The orders of convergence for H -Galerkin on problem II-3. 

K NI, N2 L 2 L?? Gaunss 1'2 Points 

20,22 1.8 1.4 2.4 
2 22,24 1.8 1.4 2.5 

24,26 1.9 1.5 2.5 

20,22 3.7 3.4 4.4 
4 22,24 3.8 3.4 4.4 

24,26 3.8 3.5 4.4 

20,22 5.7 5.4 6.3 
6 22,24 5.8 5.5 6.4 

24,26 5.8 5.5 6.4 

30,32 7.9 7.5 8.5 
8 32,34 7.9 7.6 8.6 

34,36 7.9 7.6 8.6 
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But in both cases, the higher order rate of convegence at the Gauss points, expected 
to be O(h K+ 1), is clearly exhibited. 

Thus, on the whole, the expected orders of convergence were realized. However, a 
better comparison between the methods is clearly the accuracy produced and the 
cost of obtaining it. We now give an overview of the relative performance of the 
methods and their costs, in order to reach some conclusions concerning the useful- 
ness of the methods. 

5.2. Accuracy of the Methods. In Tables 13(a) to 13(f) we give some typical results 
obtained from the various codes. Each table refers to one problem and one value of 
NINT. In these tables SLVBLK refers to the package SOLVEBLOK. (Note that for 
HM1GAL an entry under the heading "nodal error" is actually the maximum error 
at the Gauss points, K in each subinterval.) The numbers TSET and TSOLVE are in 
thousandths of a second, and are, respectively, the time taken to set up the linear 
system and the time required to solve it. We have taken care to ensure that the most 
efficient linear equation solver is used in each case, and have also taken reasonable 
care over the set-up portion of the codes. There are many calls to the routine 
BSPLVD in the B-spline package [2], and this may be a source of some inefficiency. 
In [26] Russell and Ascher discuss a modification of the B-spline package which 
makes its application to collocation for systems of differential equations more 
efficient. It may also be that the B-spline basis is not the most efficient choice; cf. 
[10]. It is not clear, however, whether much saving is possible for one equation, as we 
have, in a general setting of various values of NCOND, and different types of 
method. We feel confident that, whereas some savings could perhaps be made in 
TSET, the relative costs given here are a fair comparison of the methods. 

We give some results obtained by SAGLRK in Tables 13(e) and 13(f). (In these 
tables SOLVER denotes the sparse Choleski factorization used by SAGLRK.) This 
routine (the selfadjoint version of GALERK) always gave errors virtually identical 
to those given by GALERK, but as the tables show, the time taken for both set-up 
and solution is smaller for SAGLRK. In fact, the solution time of GALERK is 
almost halved by SAGLRK. Even with this saving however, Galerkin does not 
become competitive with collocation. 

TABLE 13(a) 
Some typical output on problem 111-1, NINT = 10. 

Method NCOND K L2-error Nodal-error Solver TSET TSOLVE 

COLLOC 2 5 .49D-5 .13D-6 COLROW 175 30 
GALERK 1 5 .55D-6 .56D-12 SLVBLK 350 100 
GALERK 2 5 .58D-6 .42D-6 SLVBLK 350 90 
COLGAL 1 5 .1lD-4 .18D-6 SLVBLK 540 100 
JACGAL 1 5 .16D-5 .18D-9 SLVBLK 560 100 
HIGAL 2 5 .49D-5 .22D-6 COLROW 480 30 
HIGAL 2 5 .49D-5 .22D-6 SLVBLK 485 60 
H1GAL 3 5 .13D-4 .64D-6 SLVBLK 490 65 
HMIGAL 0 5 .34D-6 .14D-7 ROWCOL 1080 75 
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TABLE 13(b) 

Some typical output on problem 1-2, NINT = 24. 

Method NCOND K L 2-error Nodal-error Solver TSET TSOLVE 

COLLOC 2 7 .33D-8 .49D-12 COLROW 1055 164 
GALERK 1 7 .28D-6 .44D-9 SLVBLK 1900 520 
GALERK 2 7 .33D-6 .90D-6 SLVBLK 1900 480 
COLGAL 1 7 .66D-5 .46D-5 SLVBLK 2720 520 
JACGAL 1 7 .29D-6 .13D-9 SLVBLK 2800 545 
HIGAL 2 8 .31D-7 .13D-9 COLROW 3665 255 
HIGAL 3 8 .47D-7 .24D-9 SLVBLK 3730 540 
HM1GAL 0 6 lID-5 .29D-6 ROWCOL 3550 260 

TABLE 13(c) 

Some typical output on problem 1-2, NINT 34. 

Method NCOND K L2-error Nodal-error Solver TSET TSOLVE 

COLLOC 2 9 .84D-9 .41D-12 COLROW 3090 460 
GALERK 1 9 .39D-9 .47D- 13 SLVBLK 5200 1390 
GALERK 2 9 .44D-9 .15D-8 SLVBLK 5200 1300 
COLGAL 1 9 .22D-7 .1 lD-7 SLVBLK 7040 1395 
JACGAL 1 9 .13D-8 .16D-13 SLVBLK 7210 1440 
HIGAL 2 10 .52D-10 .22D-13 COLROW 9525 690 
HIGAL 3 10 .67D-10 .36D-13 SLVBLK 9575 1420 
HM1GAL 0 8 .21 D-8 .63D-9 ROWCOL 9090 680 

TABLE 13 (d) 

Some typical output on problem 1-2, NINT 34. 

Method NCOND K L2-error Nodal-error Solver TSET TSOLVE 

COLLOC 2 11 .15D-10 .31D-12 COLROW 5415 830 
GALERK 1 11 .76D-11 .95D-13 SLVBLK 8910 2330 
GALERK 2 11 .80D-1 1 .19D-10 SLVBLK 8940 2200 
COLGAL 1 11 .27D-8 .15D-8 SLVBLK 11580 2345 
JACGAL 1 11 .15D-8 .85D-9 SLVBLK 11800 2400 
HIGAL 2 12 .44D- 12 .28D- 13 COLROW 15600 1155 
HIGAL 3 12 .51D-12 .45D-13 SLVBLK 15700 2375 
HM1GAL 0 10 .16D-10 .21D-10 ROWCOL 14640 1110 

TABLE 13(e) 

Some typical output on problem 11-3, NINT = 30. 

Method NCOND K L2-error Nodal-error Solver TSET TSOLVE 

COLLOC 2 9 .72D-11 .88D-14 COLROW 2690 410 
GALERK 1 9 .33D-1 1 .24D-14 SLVBLK 4600 1220 
SAGLRK 1 9 .33D-1 1 .24D-14 SOLVER 3590 770 
GALERK 2 9 .34D-11 .54D- Il SLVBLK 4570 1150 
SAGLRK 2 9 .34D-11 .54D- Il SOLVER 3610 760 
COLGAL 1 9 .18D-9 .25D- 10 SLVBLK 6090 1230 
JACGAL 1 9 .33D-1 1 .24D-14 SLVBLK 6270 1270 
HIGAL 2 10 .17D- 12 .51 D- 14 COLROW 8260 605 
HIGAL 3 10 .18D- 12 .48D- 14 SLVBLK 8375 1250 
HM1GAL 0 8 .79D-10 .89D- Il ROWCOL 7940 600 
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TABLE 13(f) 
Some typical output on problem 11-3, NINT = 30. 

Method NCOND K L2-error Nodal-error Solver TSET TSOLVE 

COLLOC 2 11 .49D-14 .49D-14 COLROW 4675 720 
GALERK 1 11 .25D-14 .28D-14 SLVBLK 7920 2040 
SAGLRK 1 11 .23D-14 .34D-14 SOLVER 5990 1270 
GALERK 2 11 .20D-14 .29D-14 SLVBLK 7920 1950 
SAGLRK 2 11 .20D-14 .311D-14 SOLVER 5980 1250 
COLGAL I II .72D-l1 .83D-11 SLVBLK 10060 2050 
JACGAL I 11 .38D-11 .53D-I I SLVBLK 10285 2115 
H1GAL 2 12 .13D-14 .26D-14 COLROW 13640 1030 
HIGAL 3 12 .1OD-14 .24D- 14 SLVBLK 13830 2090 
HM1GAL 0 10 .56D-13 .lOD-12 ROWCOL 12830 1005 

The first overall impression is of the superiority of COLLOC. We list here only 

the L2-errors and the maximum errors at the nodes (or at the Gauss points in the 
case of HM1GAL). In most cases HIGAL (with an order of approximation one 
higher than GALERK or COLLOC) has the smallest L2-error, and also shows some 
evidence of nodal superconvergence. But the cost of setting up HIGAL is three 
times the cost of COLLOC. In addition, if we compare Tables 13(e), (f) and also 
Tables 13(c), (d) we observe that increasing K from 9 to 11 in COLLOC gives one or 

two extra places of accuracy, and still leaves COLLOC with K - 11 costing about 
half of H1GAL with K = 10. In Tables 13(a), (b) COLLOC actually performs as 
well as or better than Hi GAL for less than one - third the cost. In all six tables the 

manitude of the nodal errors shows that superconvergence is appearing in COLLOC, 
GALERK (NCOND = 1), JACGAL, HIGAL and, to a lesser extent, HM1GAL. 

The tables also show, quite graphically, the effects of the linear equation solver 

used. In Table 13(a) for example, the effect of changing COLROW to SLVBLK, 
when NCOND = 2 in HI GAL, is shown. The results are identical while the solve 

time is doubled. An increase of NCOND from 2 to 3 in HIGAL is reflected very 
little in the errors (which, more often than not, increase slightly) and very little in 
TSET, but TSOLVE doubles. 

TABLE 13(g) 

Errors using GALERK on problem I, with x = 0.3 and a as indicated. 

K NCOND NINT a L2-error Nodal error 

6 1 1 1 20 .22D-3 .28D-4 

6 2 11 20 .29D-3 .84D-3 

6 3 11 20 .56D-3 .58D-3 

8 2 10 100 .41D-11 .77D-I 
8 3 10 100 .66D-11 .1 ID-10 

8 4 10 100 .19D-11 .43D-10 

8 2 30 2 .37D-13 .54D-13 

8 3 30 2 .21D-13 .30D- 13 

8 4 30 2 .21D-13 .23D-13 

In Table 13(g) additional results are shown indicating that increasing NCOND is 
not necessarily a wise step. In the first two problems shown in that table the error 
actually grows with NCOND. (This is to be expected at the nodes because of the 
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lack of superconvergence for NCOND > 1.) In the third problem it decreases 
marginally. The Tables 13(a) to (f) indicate that TSET is largely independent of 
NCOND and that TSOLVE decreases only fractionally for a larger overlap (in the 
case of GALERK) and doubles for H 1 GAL (where COLROW is replaced by 
SLVBLK if NCOND # 2). 

6. Conclusions. At the beginning of this paper, we stated that whereas the 
collocation method is immediately applicable to systems of differential equations, 
the other finite element techniques do not have an obvious interpretation for more 
than one equation. This put collocation at an advantage before we did any numerical 
comparisons. We felt, at the start, that if one of the other methods proved superior, 
some incentive would be given to finding how to apply it to systems; but if, on the 
other hand, collocation proved best on a single equation, it seems likely that its 
superiority would be ensured even on systems of equations. 

Simply stated, our conclusion after doing these experiments is that collocation is 
best. The accuracy of each method depends on the order of the approximation and 
the number of subintervals. But when we normalize the results by the cost of 
obtaining them, it is clear that collocation can provide an approximation of a 
particular accuracy in a fraction of the times that the other methods take. The 
savings made by collocation are in both the setting up of the equations and their 
solution. Every example we considered showed COLLOC with a set-up time seldom 
more than half that of the next cheapest method, and with a total time (set-up plus 
solve) which was often as little as a third of the total time for any of the other 
methods. The timings for the solution part also show the wisdom of using a special 
purpose linear equation solver which takes advantage of the structure of the 
equations. 

The methods discussed in this paper all have some theoretical interest, but it is 
clear that practically speaking collocation is by far the best. 
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